Vice Chancellor for Research
Vice Chancellor for Research
Joe Elabd, Ph.D
Vice Chancellor for Research
The Texas A&M University System
Support: Claudia Pollard | Email | 979.458.0243
Dr. Joe Elabd is the Vice Chancellor for Research at The Texas A&M University System; a system of 11 universities and 8 state agencies with externally funded research expenditures of $1.3 billion annually. As the leader of the A&M System Office of Research, Dr. Elabd is responsible for providing research leadership and services to support all 19 system members and overseas numerous offices and initiatives, including Texas A&M Innovation, National Laboratories Office, Bush Combat Development Complex, Texas A&M Semiconductor Institute, Texas A&M Fort Worth, Research Security Office, Research Compliance Office, Research Administration Office, Research Development Office, and the Chancellor’s Research Initiative.
Prior to these roles, Dr. Elabd has served in several administrative roles at Texas A&M University, including the Interim Vice Chancellor and Dean of Engineering, Interim Director of the Texas A&M Engineering Experiment Station, Associate Dean for Research of Engineering, and Associate Department Head of Chemical Engineering.
Dr. Elabd is also currently a Professor and the Axalta Coating Systems Chair II in the Artie McFerrin Department of Chemical Engineering at Texas A&M University. He is a Fellow of the American Physical Society and served as a Senior Fellow at the Instituto di Studi Avanzati, Università di Bologna and a Scholar in Residence at the Food & Drug Administration. He has received numerous research awards including the NSF CAREER Award, the ARO Young Investigator Award, and the DuPont Science and Engineering Award. His research focuses on electrochemical energy (batteries, capacitors, fuel cells) and materials and polymer science. Dr. Elabd has taught chemical engineering courses at all levels (freshmen, sophomore, junior, senior, and graduate).
Dr. Elabd received his Ph.D. and B.S. both in chemical engineering from Johns Hopkins University and University of Maryland, Baltimore County, respectively, and was a National Research Council Postdoctoral Fellow at the U.S. Army Research Laboratory.
Research Team
Chief Research Officers
System
Universities
Texas A&M University-Texarkana
Agencies
Texas Division of Emergency Management
Peter O’Neill
Associate Vice Chancellor
Chief Innovation Officer, Technology Commercialization
Web | Email
Texas A&M Innovation supports inventors and commercializes innovations across The Texas A&M University System, using a rigorous process to guide projects from new innovations through market commercialization. Our focus is on protecting System intellectual property, increasing inventor engagement through education and outreach, building industry partnerships, supporting startups and entrepreneurial ventures, and facilitating access to critical resources to accelerate commercialization of System intellectual property. Through our work we strive to promote regional economic development and positively impact the lives of people locally, nationally, and globally.
Pete ONeill is Chief Innovation Officer for Texas A&M Innovation, where he leads the team that manages the intellectual property for the 11 Universities and 8 State Agencies that comprise the Texas A&M University System. He has previous experience in healthcare commercialization as the Executive Director of Cleveland Clinic Innovations and aerospace commercialization as Deputy Director of the Great Lakes Industrial Technology Center at NASA Glenn. He also has experience leading startup companies, as CEO of the Cleveland Clinic spin-off company Custom Orthopaedic Solutions and CEO of PedialyDx Inc., a company that uses machine learning to analyze the acoustics of baby cry as a diagnostic tool. Pete has a degree in aeronautical engineering from MIT.
National Laboratories Office
Sean McDeavitt, Ph.D.
NLO Director
979.862.1745
Web | Email
Associate Vice Chancellor for National Laboratories
The Texas A&M University System
Professor, Nuclear Engineering
Texas A&M University
Dr. Sean M. McDeavitt is the Associate Vice Chancellor for the Texas A&M University System’s National Laboratory office. His multidisciplinary experience in nuclear, materials, and chemical engineering has equipped him with the flexibility to make leadership and research contributions in a diverse range of subjects. He earned his Ph.D. from the Purdue University School of Nuclear Engineering where his research focused on uranium-10 wt % zirconium (U-10Zr) alloy nuclear fuel for the Integral Fast Reactor; this involved handling pyrophoric metal and hydride powders, processing samples at high-temperatures, and characterizing the behavior of U-10Zr.
His professional career began at Argonne National Laboratory (ANL), where he worked from 1991 to the Fall of 2003. While at ANL, he earned an international reputation as a leader in nuclear materials research and development, especially in the areas of applied research for advanced nuclear fuel cycles, waste immobilization, and materials development for challenging environments. Between 1999 and 2003, he was the Section Manager for the Materials Development and Pyroprocess Development Sections. In the Fall of 2002, he served as a Visiting Professor at Purdue University; this marked the beginning of his transition to academia.
From August 2003 to August 2006, he worked at Purdue University as an untenured Associate Professor of Nuclear Engineering. He joined the faculty of Texas A&M University in the Fall of 2006 and has been a full professor of Nuclear Engineering since 2018. In 2014, he became the Director of the Texas A&M Nuclear Science Center (NSC), which operates a 1 MW TRIGA reactor and a 5 W AGN-201M reactor. In 2019, the NSC was renamed to the Nuclear Engineering & Science Center (NESC) and Dr. McDeavitt became the director of the NESC reactors and nuclear science research laboratories as well as the Nuclear Power Institute (NPI), which is a center focused on STEM education and workforce development. In September 2022, He became the Executive Director of NESC as he continued to position the reactor infrastructure and workforce development activities for further success. In May 2023, Dr. McDeavitt assumed the role of Associate Vice Chancellor for National Laboratories.
Gen (Ret.) Tim Green
Bush Combat Development Center Director
Web | Email
Major General (Ret.) Tim Green became Director of the George H.W. Bush Combat Development Complex (BCDC) on March 21, 2022, after serving the Texas A&M Engineering Experiment Station (TEES) as Strategic Advisor for National Security Initiatives at the Center for Infrastructure Renewal (CIR) the previous three years. He joined TEES following over 30 years of service in the United States Air Force, where his final position was the Director of Civil Engineers at Headquarters Air Force in Washington, DC. In that capacity he supported 51,000 military and civilian engineers, enabling military operations at 183 bases around the world.
Tim is a results-oriented executive with demonstrated success in managing largemultidisciplinary organizations. During much of his final 16 years in the Air Force he was responsible for overall strategy, and technical and financial performances of various organizations and specialty areas. Immediately upon joining TEES he led the proposal development team, that within three months, established the initial $65M five-year Cooperative Agreement between Texas A&M University System (TAMUS) and the United States Army Futures Command. This agreement is the cornerstone for the creation of the BCDC.
Tim holds the following academic credentials: B.S., Civil Engineering (Texas A&M University [TAMU]); M.S., Civil Engineering (TAMU); M.A., Military Operational Art (Air Command and Staff College/Air University); M.A., National Security Strategy (National War College/National Defense University).
Dr. Steve Putna
Associate Vice Chancellor
TSI Director
(979) 845-1750
The Texas A&M University System announced the appointment of Dr. E. Steve Putna as the inaugural director of the Texas A&M Semiconductor Institute to begin July 1, 2024. This appointment marks a milestone in the System’s commitment to advancing semiconductor research and development, workforce training, and industry collaboration.
“Dr. Putna has the experience and ambition needed to lead the Texas A&M Semiconductor Institute,” said John Sharp, chancellor of The Texas A&M University System. “What we are creating here will help bolster the semiconductor industry in the U.S. for the next century.”
The Texas A&M Semiconductor Institute was created in response to federal and state-level CHIPS and Science Act legislation. In May 2023, the System’s Board of Regents approved the establishment of the Institute. By June 2023, Gov. Abbott signed the Texas CHIPS Act that appropriated $1.4 billion for semiconductor research, development and manufacturing in Texas, with $226.4 million directly allocated to the Texas A&M System.
Dr. Putna brings to Texas A&M more than 25 years of extensive experience in the semiconductor industry, particularly in manufacturing and supply chain management at Intel Corporation. His career encompasses a wide range of technical and financial responsibilities. He has experience leading large teams and driving innovative research projects from concept to implementation.
“Following a 25-year career in semiconductor R&D and supply chain at Intel Corporation and at Semiconductor Research Corporation, I’m thrilled to have the opportunity to serve as the inaugural director of the Texas A&M Semiconductor Institute,” Dr. Putna said. “My vision for the Institute is one of boundless possibility leveraging positive reinforcement amongst Texas, the US government, and A&M’s outstanding track record of research, development, innovation, and workforce development. Intense focus on maintaining and growing public-private partnerships as well as fostering consortia alliances will drive the Institute to a position of global prominence whilst simultaneously realizing the goal of strengthening our domestic semiconductor ecosystem.”
The Texas A&M Semiconductor Institute was created to promote the growth and competitiveness of the semiconductor industry. The Institute will serve as a multidisciplinary research organization focusing on advancing semiconductor manufacturing technology and promoting workforce development. It will be a hub for collaboration among academic researchers, industry leaders, and government partners to develop innovative solutions to complex semiconductor manufacturing challenges.
Objectives of the Institute include:
- Conducting cutting-edge research and development in semiconductor manufacturing.
- Collaborating with industry partners to transfer technology from research to commercialization.
- Securing federal and state funding to support semiconductor research and workforce development.
- Offering education and training programs to develop the next generation of the semiconductor workforce.
- Establishing a secure semiconductor fabrication capability to support national defense needs.
- Addressing the critical need for U.S. leadership and security in semiconductor manufacturing.
Dr. Putna’s strategic vision for the Institute includes reviewing and refining the existing strategy and operating plans, leveraging his extensive network to build relationships with key industry and government stakeholders and driving innovation through public-private partnerships. His leadership will be instrumental in shaping the future of semiconductor research and development at Texas A&M and beyond.
Dr. Putna holds a Ph.D. in Chemical Engineering from the University of Pennsylvania and a B.S. in Chemical Engineering from the University of Texas at Austin.
-
About
-
The Texas A&M Semiconductor Institute (TSI) is a multidisciplinary research organization that focuses on advancing semiconductor manufacturing technology and promoting workforce development in the semiconductor industry. TSI represents the collective semiconductor related research and workforce development of the 11 Universities and 8 state agencies of the Texas A&M University System. The institute serves as a hub for research collaboration between academic researchers, industry, and government partners to develop innovative solutions to complex semiconductor manufacturing challenges. TSI also coordinates education and training programs to help develop the next generation of the semiconductor workforce, including undergraduate and graduate courses, professional development programs, and continuing education opportunities. In addition, the Institute is committed to providing secure production of semiconductors for the defense department, ensuring the integrity and reliability of the semiconductor supply chain for national security purposes. The Texas A&M Semiconductor Institute aims to promote the growth and competitiveness of the semiconductor industry in Texas and beyond.
-
Mission & Vision
-
Vision: The A&M System to become a leader in semiconductor technology and enable national independence in semiconductor manufacturing.
Mission: The mission of the Institute is to advance the development and production of semiconductors through cutting-edge research, collaboration with industry and government, and education and workforce development.
Goals:
- Conduct research and development in semiconductor manufacturing, including materials, processes, and device structures, to enable the next generation of semiconductor devices.
- Collaborate with industry partners to transfer technology from research to commercialization and to identify industry needs for future research.
- Seek federal and state funding to support research, development, and workforce development in the semiconductor industry.
- Provide education and training opportunities for students, researchers, and industry professionals to advance their skills and knowledge in semiconductor manufacturing.
- Foster a culture of innovation and entrepreneurship by encouraging the formation of startup companies based on semiconductor technologies.
- Establish a secure semiconductor fabrication capability to support the needs of the defense department.
- Address the national need to regain U.S. leadership and security in semiconductor manufacturing.
-
Research
-
The Texas A&M University system actively engages in a variety of research activities pertaining to semiconductor manufacturing across multiple areas. These research endeavors include process technology, device design and integration, yield enhancement, reliability and failure analysis, packaging and interconnects, metrology and characterization, equipment and manufacturing automation, workforce development, supply chains and sustainability, as well as semiconductor applications. Key research areas in semiconductor manufacturing encompass the following:
- Process Technology: This area focuses on developing advanced manufacturing processes to fabricate smaller, faster, and more energy-efficient semiconductor devices. Research involves exploring new materials, refining lithography techniques, and optimizing the deposition, etching, and doping processes. Leap ahead research in process innovations aims to develop novel manufacturing techniques and processes to overcome current limitations and improve efficiency, such as exploring new deposition and etching methods, advanced lithography techniques, and innovative materials engineering approaches for higher device densities, improved energy efficiency, and better device performance.
- Device Design and Integration: Researchers work on designing novel device structures and architectures to enhance the functionality and performance of semiconductor devices. This involves exploring new materials, optimizing device layouts, and investigating advanced integration techniques such as 3D stacking and heterogeneous integration. As traditional scaling approaches reach their limits, leap ahead research focuses on developing alternative technologies to continue improving performance and functionality. This includes exploring novel materials, new device architectures (e.g., 2D materials, nanowires, and tunneling devices), and alternative computing paradigms (e.g., neuromorphic, analog, and quantum computing). Leap ahead research in heterogeneous integration aims to develop techniques for combining different semiconductor technologies, materials, and functionalities onto a single chip or package to enable higher performance, lower power consumption, and compact form factors.
- Design for Manufacturing (DFM): Research in DFM focuses on developing design methodologies and tools to enable better manufacturability, yield improvement, and cost reduction. This includes developing design rules, process-aware design, and optimization algorithms that consider manufacturing constraints and variability from the early stages of chip design.
- Reliability and Failure Analysis: Researchers investigate failure mechanisms, analyze reliability data, and develop methodologies to enhance the robustness and longevity of semiconductor devices. This includes studying factors such as electromigration, thermal effects, stress-induced failures, and aging.
- Packaging and Interconnects: Research in packaging focuses on developing advanced technologies to ensure efficient thermal management, signal integrity, and reliability of integrated circuits. This includes exploring new interconnect materials, designing high-density packaging solutions, and investigating advanced packaging techniques like fan-out wafer-level packaging (FOWLP) and system-in-package (SiP) approaches. The aim is to develop innovative packaging technologies that address challenges in thermal management, signal integrity, and miniaturization, utilizing technologies like FOWLP, chip-on-wafer (CoW), chip-on-chip (CoC) approaches, and developing new materials and interconnect technologies for improved performance and reliability.
- Metrology and Characterization: Researchers work on developing advanced metrology techniques, such as high-resolution microscopy, spectroscopy, and electrical probing, to accurately measure and characterize semiconductor devices and materials at nanoscale levels. This allows for better process optimization and quality control.
- Equipment and Manufacturing Automation: Researchers focus on improving equipment efficiency, automation, and control systems in semiconductor manufacturing. This includes developing intelligent systems, machine learning algorithms, and advanced robotics to optimize manufacturing processes, reduce downtime, and enhance productivity. Research in smart manufacturing and Industry 4.0 leverages automation, data analytics, machine learning, and artificial intelligence to optimize manufacturing processes, increase productivity, and reduce costs. Intelligent systems for process control, predictive maintenance, and real-time monitoring enable faster and more efficient semiconductor manufacturing.
- Workforce Development: Research in semiconductor workforce development studies the current and future needs of the industry, identifies skill gaps, and designs effective training and educational programs to meet those needs.
- Supply Chains and Sustainability: Research in semiconductor supply chain resiliency aims to understand and mitigate vulnerabilities and disruptions within the semiconductor supply chain. This involves ensuring a robust and reliable flow of materials, components, and products by addressing challenges such as geopolitical risks, natural disasters, manufacturing capacity constraints, and dependencies on specific regions or suppliers. Researchers analyze the supply chain ecosystem, map out critical nodes, identify potential risks, and develop strategies to enhance resilience. Sustainable manufacturing aims to minimize the environmental impact of semiconductor manufacturing processes by developing eco-friendly materials, energy-efficient manufacturing techniques, recycling and waste management strategies, and exploring renewable energy sources for powering semiconductor fabs.
- Semiconductor Applications: Research in application-specific areas focuses on developing tailored semiconductor technologies and solutions for specific industries and applications. Notable areas include automotive, Internet of Things (IoT), healthcare and biotechnology, aerospace and defense, industrial automation, consumer electronics, agriculture, energy, and communications and networking.
-
Workforce Development
-
PARTNERS
TAMUS UNIVERSITIES
- Texas A&M University (TAMU)
- Prairie View A&M University
- Texas A&M University-Commerce
- Tarleton State University
- West Texas A&M University
- Texas A&M University-Kingsville
- Texas A&M University-Corpus Christi
- Texas A&M International University
- Texas A&M University-Texarkana
- Texas A&M University-Central Texas
- Texas A&M University-San Antonio
TAMUS AGENCIES
- Texas A&M AgriLife Research
- Texas A&M Engineering Experiment Station (TEES)
- Texas A&M Forest Service
- Texas A&M AgriLife Extension Service
- Texas A&M Engineering Extension Service (TEEX)
- Texas A&M Transportation Institute
- Texas Division Of Emergency Management (TDEM)
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL)
EXTERNAL PARTNERS
- Alamo Colleges District
- Austin Community College District
- Blinn College
- Dallas College
- Houston Community College
- Midland College
- South Texas College
- Stephen F Austin University
- Tarrant County College
SUB-FAB AND CONSTRUCTION AREAS OF STUDY:
- Construction Science
- Process Safety
- Energy Efficiency
- Smart Manufacturing
- Water Resources
- Environmental Health
SEMICONDUCTOR RELATED TECHNICAL COURSES:
- Microelectronic Circuit Fabrication
- Microelectronic Device Design
- Plasma Engineering and Applications
- Entrepreneurship in Nano Systems
- Electronics Testing
- Physics of the Solid State
- Materials Chemistry of Inorganic Materials
- Metrology
TEEX Courses/Programs
-
Partners
-
-
Contact
-
Email TSI: tsi@tamus.edu
The Texas A&M Semiconductor Institute (TSI) is a multidisciplinary research organization that focuses on advancing semiconductor manufacturing technology and promoting workforce development in the semiconductor industry. TSI represents the collective semiconductor related research and workforce development of the 11 Universities and 8 state agencies of the Texas A&M University System. The institute serves as a hub for research collaboration between academic researchers, industry, and government partners to develop innovative solutions to complex semiconductor manufacturing challenges. TSI also coordinates education and training programs to help develop the next generation of the semiconductor workforce, including undergraduate and graduate courses, professional development programs, and continuing education opportunities. In addition, the Institute is committed to providing secure production of semiconductors for the defense department, ensuring the integrity and reliability of the semiconductor supply chain for national security purposes. The Texas A&M Semiconductor Institute aims to promote the growth and competitiveness of the semiconductor industry in Texas and beyond.
Vision: The A&M System to become a leader in semiconductor technology and enable national independence in semiconductor manufacturing.
Mission: The mission of the Institute is to advance the development and production of semiconductors through cutting-edge research, collaboration with industry and government, and education and workforce development.
Goals:
- Conduct research and development in semiconductor manufacturing, including materials, processes, and device structures, to enable the next generation of semiconductor devices.
- Collaborate with industry partners to transfer technology from research to commercialization and to identify industry needs for future research.
- Seek federal and state funding to support research, development, and workforce development in the semiconductor industry.
- Provide education and training opportunities for students, researchers, and industry professionals to advance their skills and knowledge in semiconductor manufacturing.
- Foster a culture of innovation and entrepreneurship by encouraging the formation of startup companies based on semiconductor technologies.
- Establish a secure semiconductor fabrication capability to support the needs of the defense department.
- Address the national need to regain U.S. leadership and security in semiconductor manufacturing.
The Texas A&M University system actively engages in a variety of research activities pertaining to semiconductor manufacturing across multiple areas. These research endeavors include process technology, device design and integration, yield enhancement, reliability and failure analysis, packaging and interconnects, metrology and characterization, equipment and manufacturing automation, workforce development, supply chains and sustainability, as well as semiconductor applications. Key research areas in semiconductor manufacturing encompass the following:
- Process Technology: This area focuses on developing advanced manufacturing processes to fabricate smaller, faster, and more energy-efficient semiconductor devices. Research involves exploring new materials, refining lithography techniques, and optimizing the deposition, etching, and doping processes. Leap ahead research in process innovations aims to develop novel manufacturing techniques and processes to overcome current limitations and improve efficiency, such as exploring new deposition and etching methods, advanced lithography techniques, and innovative materials engineering approaches for higher device densities, improved energy efficiency, and better device performance.
- Device Design and Integration: Researchers work on designing novel device structures and architectures to enhance the functionality and performance of semiconductor devices. This involves exploring new materials, optimizing device layouts, and investigating advanced integration techniques such as 3D stacking and heterogeneous integration. As traditional scaling approaches reach their limits, leap ahead research focuses on developing alternative technologies to continue improving performance and functionality. This includes exploring novel materials, new device architectures (e.g., 2D materials, nanowires, and tunneling devices), and alternative computing paradigms (e.g., neuromorphic, analog, and quantum computing). Leap ahead research in heterogeneous integration aims to develop techniques for combining different semiconductor technologies, materials, and functionalities onto a single chip or package to enable higher performance, lower power consumption, and compact form factors.
- Design for Manufacturing (DFM): Research in DFM focuses on developing design methodologies and tools to enable better manufacturability, yield improvement, and cost reduction. This includes developing design rules, process-aware design, and optimization algorithms that consider manufacturing constraints and variability from the early stages of chip design.
- Reliability and Failure Analysis: Researchers investigate failure mechanisms, analyze reliability data, and develop methodologies to enhance the robustness and longevity of semiconductor devices. This includes studying factors such as electromigration, thermal effects, stress-induced failures, and aging.
- Packaging and Interconnects: Research in packaging focuses on developing advanced technologies to ensure efficient thermal management, signal integrity, and reliability of integrated circuits. This includes exploring new interconnect materials, designing high-density packaging solutions, and investigating advanced packaging techniques like fan-out wafer-level packaging (FOWLP) and system-in-package (SiP) approaches. The aim is to develop innovative packaging technologies that address challenges in thermal management, signal integrity, and miniaturization, utilizing technologies like FOWLP, chip-on-wafer (CoW), chip-on-chip (CoC) approaches, and developing new materials and interconnect technologies for improved performance and reliability.
- Metrology and Characterization: Researchers work on developing advanced metrology techniques, such as high-resolution microscopy, spectroscopy, and electrical probing, to accurately measure and characterize semiconductor devices and materials at nanoscale levels. This allows for better process optimization and quality control.
- Equipment and Manufacturing Automation: Researchers focus on improving equipment efficiency, automation, and control systems in semiconductor manufacturing. This includes developing intelligent systems, machine learning algorithms, and advanced robotics to optimize manufacturing processes, reduce downtime, and enhance productivity. Research in smart manufacturing and Industry 4.0 leverages automation, data analytics, machine learning, and artificial intelligence to optimize manufacturing processes, increase productivity, and reduce costs. Intelligent systems for process control, predictive maintenance, and real-time monitoring enable faster and more efficient semiconductor manufacturing.
- Workforce Development: Research in semiconductor workforce development studies the current and future needs of the industry, identifies skill gaps, and designs effective training and educational programs to meet those needs.
- Supply Chains and Sustainability: Research in semiconductor supply chain resiliency aims to understand and mitigate vulnerabilities and disruptions within the semiconductor supply chain. This involves ensuring a robust and reliable flow of materials, components, and products by addressing challenges such as geopolitical risks, natural disasters, manufacturing capacity constraints, and dependencies on specific regions or suppliers. Researchers analyze the supply chain ecosystem, map out critical nodes, identify potential risks, and develop strategies to enhance resilience. Sustainable manufacturing aims to minimize the environmental impact of semiconductor manufacturing processes by developing eco-friendly materials, energy-efficient manufacturing techniques, recycling and waste management strategies, and exploring renewable energy sources for powering semiconductor fabs.
- Semiconductor Applications: Research in application-specific areas focuses on developing tailored semiconductor technologies and solutions for specific industries and applications. Notable areas include automotive, Internet of Things (IoT), healthcare and biotechnology, aerospace and defense, industrial automation, consumer electronics, agriculture, energy, and communications and networking.
PARTNERS
TAMUS UNIVERSITIES
- Texas A&M University (TAMU)
- Prairie View A&M University
- Texas A&M University-Commerce
- Tarleton State University
- West Texas A&M University
- Texas A&M University-Kingsville
- Texas A&M University-Corpus Christi
- Texas A&M International University
- Texas A&M University-Texarkana
- Texas A&M University-Central Texas
- Texas A&M University-San Antonio
TAMUS AGENCIES
- Texas A&M AgriLife Research
- Texas A&M Engineering Experiment Station (TEES)
- Texas A&M Forest Service
- Texas A&M AgriLife Extension Service
- Texas A&M Engineering Extension Service (TEEX)
- Texas A&M Transportation Institute
- Texas Division Of Emergency Management (TDEM)
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL)
EXTERNAL PARTNERS
- Alamo Colleges District
- Austin Community College District
- Blinn College
- Dallas College
- Houston Community College
- Midland College
- South Texas College
- Stephen F Austin University
- Tarrant County College
SUB-FAB AND CONSTRUCTION AREAS OF STUDY:
- Construction Science
- Process Safety
- Energy Efficiency
- Smart Manufacturing
- Water Resources
- Environmental Health
SEMICONDUCTOR RELATED TECHNICAL COURSES:
- Microelectronic Circuit Fabrication
- Microelectronic Device Design
- Plasma Engineering and Applications
- Entrepreneurship in Nano Systems
- Electronics Testing
- Physics of the Solid State
- Materials Chemistry of Inorganic Materials
- Metrology
TEEX Courses/Programs
Email TSI: tsi@tamus.edu
Dr. Kevin Gamache
Associate Vice Chancellor
Chief Research Security Officer
979.862.1965
Web | Email
The Texas A&M University System Research Security Office (RSO) was established to support all A&M System principal investigators (PIs) in meeting federal requirements for securing classified information, controlled unclassified information (CUI), and to serve as the Export Control Office for the A&M System. The mission of the RSO is to establish and administer export control and research security policies, procedures and technology to enable Texas A&M University System Members to comply with federal guidelines for transporting and handling all levels of U.S. Government information.
Dr. Kevin Gamache is The Facility Security Officer (FSO) for The Texas A&M University System. The FSO is responsible for managing A&M System’s relationship with federal agencies under the National Industrial Security Program requirements.
Through a concerted effort, the Research Security Office fulfills four objectives
• Alleviate the burden of compliance on all faculty
• Support the system in securing regulated date
• Manage the system secure computing enclave
• Advise system members on export control matters
Award-Winning Research Security Office
• 7 consecutive superior ratings
• 2 DCSA Awards for Excellence in Counter Intelligence
• 3 Cogswell Awards for Excellence in Industrial Security
• 1 Donnelly Award for Excellence in Counterintelligence
• Willingness to do classified research
• Numerous classified researchers
• Controlled-access facility for classified research
Stacy Pritt, DVM
Associate Vice Chancellor
Chief Research Compliance Officer
Email
Dr. Stacy Pritt is Associate Vice Chancellor and Chief Research Compliance Officer at The Texas A&M University System. As a leader within the A&M System Office of Research, she supports compliance to regulations and guidelines for animal research, human research protections, financial conflict of interest in research, institutional biosafety, responsible conduct of research, and other areas of research compliance across the System’s 11 universities and 8 state agencies.
Prior to coming to The Texas A&M University System, Dr. Pritt served in leadership roles across academia and industry, including at the Harvard Medical School and the University of Texas Southwestern Medical Center. In those roles, she not only directed multiple research compliance offices but also managed drug and medical device research programs, focusing on ocular diseases and wound healing. She also spearheaded a successful cross-institutional collaboration with the Texas A&M University School of Veterinary Medicine and Biomedical Sciences to fund research as a part of a $40M NIH Clinical and Translational Science Award.
Dr. Pritt is a nationally recognized expert in research compliance, having authored or co-authored over 60 publications, including book chapters, on various compliance subjects. Additionally, she is a sought-after speaker on research compliance, animal welfare, professional development, and leadership topics.
Dr. Pritt is a notable leader within the veterinary profession, having served as the Vice President of the American Veterinary Medical Association, the largest veterinary organization in the United States, and President of the American College of Animal Welfare. Currently, she serves in leadership positions within various organizations including Public Responsibility in Medicine & Research, Americans for Medical Progress, and the Texas Society for Biomedical Research. She is the recipient of numerous awards for her leadership, speaking, and training skills.
Dr. Pritt received her B.S. in Biology from the California State Polytechnic University at Pomona, where she serves on the College of Science Dean’s Advisory Committee. She received her D.V.M. from the Washington State University College of Veterinary Medicine and is a recipient of their Outstanding Service Alumni Award. She has also earned an M.S. in Managerial Science and an M.B.A. in Healthcare Management, and is certified in institutional animal care and use (IACUC) administration, healthcare research compliance, and export control requirements.
Dr. Sharmila Pathikonda
Associate Vice Chancellor for Research
Director for Research Development
979.458.0242
Web | Email
Dr. Sharmila Pathikonda currently holds the position of Associate Vice Chancellor and Director of Research Development at the Office of Research in The Texas A&M University System, overseeing a network of 11 universities and 8 state agencies. In this pivotal role, she spearheads large strategic initiatives, fosters collaborative research endeavors, and enhances the overall research enterprise across the system.
In her current role, Dr. Pathikonda’s expertise in STEM fields proves invaluable, providing specialist scientific support for federal grant proposals spanning diverse areas such as cancer biology, climate science, energy innovation, and nuclear engineering. Her passion for science, coupled with robust quantitative training has propelled her success in research development.
Dr. Sharmila Pathikonda holds a diverse and comprehensive educational background. She earned her Bachelor of Science degree with majors in Botany, Microbiology, and Chemistry, as well as her Master of Science degree in Biochemistry, both from Bangalore University in India. Her academic journey continued with a Ph.D. in Environmental Biology from the University of Louisiana, Lafayette, where her research focused on understanding the ecological and physiological responses of freshwater marsh plants to salinity stress.
Following the completion of her doctoral studies, Dr. Pathikonda pursued postdoctoral research, delving into Hierarchical Bayesian statistical modeling of plant functional traits. This interdisciplinary work took her to the University of Wyoming and later to Arizona State University, where she expanded her expertise in mathematical modeling and its application to understanding the impacts of climate change on tree species distributions.
With over 13 years of experience in research, education, and administration, Dr. Pathikonda takes pride in her role as a champion for early-stage researchers. In her capacity as the Director of Research Development, Dr. Pathikonda is responsible for guiding the development of core ideas and concepts forming the strategic foundations of major engineering and scientific research proposals. This includes facilitating multi-institutional research and educational partnerships, curriculum initiatives, and support structures. Additionally, she plays a key role in developing and working on proposals seeking grant funding from federal and state research agencies, private foundations, or industry. Dr. Pathikonda is also actively engaged in serving on proposal review panels for the National Science Foundation (NSF).
Dr. Pathikonda envisions enhancing the research enterprise within the Texas A&M University System, which boasts a research expenditure exceeding $1.2 billion. Her goal is to provide high-quality support to researchers, contribute to strategic research development efforts, and elevate the overall research portfolio. Dr. Pathikonda aspires to create a conducive environment for researchers, ensuring a positive trajectory in research expenditure, and advancing the System’s ambitious vision for research and education.
Research Development Org Chart
Research Administration
Michelle Strickland
Research Administration Director
Email
Michelle Strickland joined The Texas A&M University System as Director, Research Administration in November of 2023.
Michelle has over 20 years of management and sponsored research administration experience, including contracting with federal, state, nonprofit and for-profit entities, review and negotiation of funded and non-funded agreements, review and negotiation of SBIR/STTR agreements, development and oversight of an export control program, negotiation of procurement contracts, oversight and administration of a federal property program and administration and oversight of small business programs.
From 1992 to 2011, Michelle worked for the Texas A&M Research Foundation (TAMRF), exclusively at the International Ocean Discovery Program (IODP), one of the world’s largest ocean research programs, with worldwide operations of a research vessel dedicated to scientific ocean research.
In 2011, TAMRF merged with other research administrative units to form Sponsored Research Services (SRS). Michelle continued her work at IODP until 2015 when she transferred to SRS’ main office. At SRS, Michelle served as a contract negotiator and Team Lead for contract negotiations for the Texas A&M Engineering Experiment Station, Texas A&M University and Texas A&M University at Galveston, as well as the Small Business Liaison Officer. Her time at SRS included the successful coordination and negotiation of the $96M IDIQ contract with the Army for the George H.W. Bush Combat Development Complex.
In 2022, Michelle joined The University of Texas at Austin’s Office of Sponsored Projects (OSP) as the Assistant Director of Contracting, and within seven months was promoted to Associate Director of Contracting. As a member of the executive leadership team, her responsibilities included strategic planning and spearheading OSP and university-wide initiatives. While at UT, Michelle made impactful process improvements to streamline negotiations and collaborated with other OSP functional areas to refine the overall grant lifecycle and improve customer service.
Michelle received a bachelor’s degree from Texas A&M University in political science in 2007. During her time at TAMRF, she twice received the Exceptional Performance Award, and while at SRS she received the Division of Research Staff Excellence Award in 2017.
Texas A&M Fort Worth
Dr. Kim McCuistion
Associate Vice Chancellor
979.458.0243
Web | Email
Dr. Kim McCuistion serves as the Associate Vice Chancellor and Director of the new Texas A&M – Fort Worth campus. In this role, Dr. McCuistion’s focus is to turn the new campus into a hub for collaboration between key Fort Worth industries and top research, education, and workforce training assets of the Texas A&M System.
Prior to joining the Texas A&M System, she served as the Vice President for External Operations and Dean of the Fort Worth campus at Tarleton State University. As dean of the Fort Worth campus, she worked with North Texas business and industry leaders, Tarleton faculty and staff, and community college partners to expand existing degree programs and add new ones. She was responsible for the university’s teaching sites in Waco, Midlothian, and Bryan as well. Dr. McCuistion also served as Chief of Staff to Tarleton’s President James Hurley and President Emeritus Dominic Dottavio and was a tenured Professor in the College of Agriculture and Natural Resources at Tarleton State University.
Dr. McCuistion spent 11 years with Texas A&M University-Kingsville before moving to North Texas in 2017. At A&M Kingsville, she had a split appointment with the Department of Animal, Rangeland, and Wildlife Sciences and the King Ranch Institute for Ranch Management. She also served as Dean of Texas A&M-Kingsville’s Honors College for three years.
Dr. McCuistion holds a bachelor’s degree in animal science from Texas A&M University, a master’s in animal science from Kansas State University, and a doctorate in agriculture from West Texas A&M University.